Brønsted Acidity of Rutile Developed During Alcohol Dehydration as Shown by Simultaneous Alkene Isomerization: Microwave Spectroscopic Analyses

By Gordon G. Ferrier, Christopher S. John,*† and H. Frank Leach (Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ)

and Lois V. F. Kennedy and J. Kelvin Tyler (Chemistry Department, University of Glasgow, Glasgow G12 8QQ)

Summary Microwave spectroscopic analyses of deuterio-propenes produced from $\mathrm{CD_2=CH-CH_3}$, and of deuterioisobutenes from $\mathrm{CD_2=C(CH_3)_2}$, indicate conclusively that on rutile in the presence of water and/or alcohol carbonium ion intermediates are involved in alkene isomerization; in contrast, comparison of rates of reaction of $\mathrm{CD_2=CH-CH_3}$ and $\mathrm{CD_2=C(CH_3)_2}$ implies that π -allylic species with partial carbonium ion character are the intermediates in isomerization in the absence of water or alcohol.

Some recent studies of reactions of primary alcohols over rutile (${\rm TiO_2}$) indicated that dehydration (to alkene and water) occurred at $ca.~550~{\rm K}$. It became desirable to establish if the product alkenes could isomerize under the reaction conditions or whether the primary product distribution was sensibly preserved.

Recently the reaction of CD₂=CH-CH₃ with D₂O was successfully employed to demonstrate the Brønsted acid nature of alumina at ca. 470 K.⁵ The present work was undertaken to establish if a similar reaction mechanism was operative for labelled propene over TiO₂ at ca. 570 K in the presence of D₂O or pentan-1-ol, i.e., to investigate if the reaction proceeded by a different route in the presence of such species. Additionally the reaction of a selectively labelled isobutene, CD₂=C(CH₃)₂, with water was examined to provide further information of the Brønsted acid nature of the rutile surface.

The source and pretreatment of the rutile were as previously reported.³ Samples of 1 g were used with ca. 1×10^{20} molecules of alkene and a similar amount of D_2O or pentan-1-ol as appropriate. Reaction was followed by mass spectrometry to the desired extent, at which time a gas phase sample was removed for subsequent microwave analysis.² The experimental details and results are summarised in the Table.

Table. Percentage analyses of deuteriopropenes and deuterioisobutenes produced over TiO₂

Experiment no.	1	2	3	4	5
Reactants	$CD_2=CH-CH_3+D_2O^c$	$CD_2=CH-CH_3+D_2O^d$	$CD_2=CH-CH_3$	$CD_2 = C(CH_3)_2$	$CH_2 = C(CH_3)_2 + D_2O^c$
			+ Pentan-1-ole		
Reaction temperature/K	523	523	553	283	390
CD ₂ =CR-CH ₃ ^b	87.6(96)	68.8(89)	$46 \cdot 0(57)$	$12 \cdot 6(17)$	
CHD_2 - CR = CH_2	3 ·6(4)	8.4(11)	$33 \cdot 6(46)$	34.9(47)	
CH ₂ D-CR=CH ₂	0 '	0 ′	5.8(34)	6.0(54)	24.9(73)
CH ₃ -CR=CHD	1.0(100)	$2 \cdot 1(100)$	11·1(66)	5.0(45)	9.2(27)
$CD_2 = CR - CH_2D$	1.0(13)	3.3(16)	0.4(17)		
CD_3 - CR = CH_2	6.8(87)	17.4(84)	$2 \cdot 0(83)$		

 a Numbers in parentheses are normalised distributions of $[^2H_1]$ -species for various i. b R is either H (propene) or CH $_3$ (isobutene). c Reactants both added at 283 K and warmed to reaction temperature. d D $_2$ O added initially at $\it{ca.}$ 700 K prior to cooling to 283 K and admitting CD $_2$ -CH-CH $_3$. e Pentan-1-ol added initially at 550 K and partially dehydrated for 20 min prior to cooling to 283 K and admitting CD $_2$ -CH-CH $_3$. f Also contained 26·9% CHD=C(CH $_3$)CH $_2$ D [and CH $_2$ -C(CH $_2$ D) $_2$] with 11·7% unknown [2 H $_3$]-species.

It is known that in the absence of alcohol or water, n-butenes1 and propene2 isomerize over TiO2 at rates of ca. 1 \times 10¹⁵ molecule m⁻² s⁻¹ at 430 K, with the reaction of propene (as $\mathrm{CD}_2\!\!=\!\!\mathrm{CH}\!\!-\!\!\mathrm{CH}_3\!)$ being predominantly intramolecular and involving π -allylic species. However, Hughes et al.3 reported that the exchange of propene, with D2 or D₂O, achieved such a rate only at ca. 570 K, and the deuteriopropenes produced had D randomly distributed over the five terminal positions. Such a distribution is characteristic of carbonium ion intermediates if the supply of D is not rate determining for the exchange reaction. With D₂ as the source, the supply of D was indeed shown to be rate determining but this was somewhat uncertain with D₂O. The exchange reaction of isobutene over rutile at 530 K has been reported4 as some thirty times faster with D₂O than with D₂ which suggests that water can indeed induce a carbonium ion reaction.

Experiments 1 and 2 provide clear evidence that in the presence of water ($\rm D_2O$) exchange of propene with D and double bond migration (DBM) occurred at essentially the same rate. Furthermore, the highly selective production of $\rm CD_3\text{--}CH\text{--}CH_2$ at ca. 520 K is strongly indicative⁵ of classical carbonium ion intermediates reacting on Brønsted acid centres produced with D⁺ from D₂O, irrespective of whether water was initially added at 300 or 700 K.

Exposure of TiO_2 to CD_2 =CH-CH $_3$ and pentan-1-ol at 298 K, with subsequent warming to ca. 550 K, showed that alcohol alone was sufficient to poison the (π -allylic) reaction of propene at ca. 450 K as dehydration products were only detectable by g.l.c. at ca. 550 K. Experiment 3 confirms that in the presence of pentan-1-ol and its dehydration products, propene reacts on Brønsted acid centres which initially contain H+ leading to the selective production of CHD=CH-CH $_3$, CHD $_2$ -CH=CH $_2$, and CD $_3$ -CH=CH $_2$.

[†] Present address: Dr. C. S. John, Koninklijke/Shell-Laboratorium, Amsterdam, Badhuisweg 3, Postbus 3003, Amsterdam-Noord, The Netherlands.

Compound $CD_2=C(CH_3)_2$ reacted on TiO_2 at a rate of ca. 1×10^{15} molecule m⁻² s⁻¹ at 283 K (experiment 4); 450 K was needed for similar reaction of CD2=CH-CH3.2 Microwave analysis of deuterioisobutenes produced6 indicates that predominantly intramolecular DBM occurred; CHD=C(CH₃)CH₂D was produced from CH₂=C(CH₃)CHD₂ in preference to [2H1]-species. In previous work on D2 exchange with both propene and isobutene, therefore, the rate of supply of D from D2 was rate determining. In addition, substitution of H on C(2) in propene for CH₃, to give isobutene, confers greatly enhanced reactivity which, with the intramolecular nature of the reaction, implies the involvement of allylic species with carbonium ion character, in contradiction to the conclusion of π -allylic carbanions reached on the more subjective basis of product distribution in butene isomerization. Such species might be formed⁸ on the Lewis acid centres of rutile as shown in the Scheme.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & &$$

Scheme. Schematic representation of the active site for alkene isomerization over rutile.

Intermolecular reaction of either CD₂=C(CH₃)₂ or CH₂=C(CH₃)₂ with D₂O occurred at very similar rates at 390 K. The ratio, CH₂=C(CH₃)CH₂D:CHD=C(CH₃)₂ was 2.7 + 0.3: 1 in the latter case (experiment 5) whereas DBM in the former was predominantly intermolecular and occurred at sensibly the same rate as exchange. These observations confirm directly that isobutene reacts on TiO₂ in the presence of D₂O through the carbonium ion intermediate, (CH₃)₂-C+-CH₂D; random loss of H+ gives the above [${}^{2}H_{1}$] product ratio whereas a π -allylic intermediate would give only CH₂=C(CH₃)CH₂D. Thus, reaction through a tertiary carbonium ion (from isobutene) occurs at similar rates to that through a secondary ion (from propenes) in the presence of the same quantity of water, but at 160 K lower in agreement with its greater stability.

It is clear, therefore, that reaction of both propene and isobutene on TiO₂ in presence of water or alcohol occurs by a different mechanism (carbonium ions on Brønsted centres) to that found previously (π -allyls) in their absence. Studies of alkene isomerization in the absence of water or alcohol cannot therefore be used to describe such reactions in their presence, a conclusion also reached with water on alumina⁵ which should probably, therefore, be regarded as of general validity for metal oxide catalysts.

L.V.F.K. and G.G.F. thank the S.R.C. and Tioxide International, respectively, for financial support.

(Received, 19th June 1978; Com. 642.)

¹ C. Kemball, Ann. New York Acad. Sci., 1973, 213, 90.

C. S. John, C. Kemball, R. Dickinson, and J. K. Tyler, J.C.S. Faraday I, 1976, 72, 1782.
 B. T. Hughes, C. Kemball, and J. K. Tyler, J.C.S. Faraday I, 1975, 71, 1285.
 M. M. Halliday, C. Kemball, H. F. Leach, and M. S. Scurrell, Proc. 6th International Congr. Catalysis, London, 1976, The Chemical

Society, Vol. 1 pp. 283—289.

⁵ C. S. John, A. Tada, and L. V. F. Kennedy, J.C.S. Faraday I, 1978, 74, 498.

⁶ C. S. John, C. Kemball, L. V. F. Kennedy, and J. K. Tyler, unpublished results.

⁷ I. R. Shannon, I. J. S. Lake, and C. Kemball, Trans. Faraday Soc., 1971, 67, 2760.

⁸ B. I. Brookes, Ph.D. Thesis, Edinburgh University, 1972.